MPE and Partial Inversion in Lifted Probabilistic Variable Elimination
نویسندگان
چکیده
It is often convenient to represent probabilistic models in a first-order fashion, using logical atoms such as partners(X,Y ) as random variables parameterized by logical variables. (de Salvo Braz, Amir, & Roth 2005), following (Poole 2003), give a lifted variable elimination algorithm (FOVE) for computing marginal probabilities from first-order probabilistic models (belief assessment, or BA). FOVE is lifted because it works directly at the first-order level, eliminating all the instantiations of a set of atoms in a single step, in some cases independently of the number of these instantiations. Previous work could treat only restricted potential functions. There, atoms’ instantiations cannot constrain each other: predicates can appear at most once, or logical variables must not interact across atoms. In this paper, we present two contributions. The first one is a significantly more general lifted variable elimination algorithm, FOVE-P, that covers many cases where atoms share logical variables. The second contribution is to use FOVE-P for solving the Most Probable Explanation (MPE) problem, which consists of calculating the most probable assignment of the random variables in a model. The transition from BA to MPE is straightforward in propositional models, but the lifted first-order case is harder. We introduce the notion of lifted assignments, a distribution of values to a set of random variables rather than to each individual one. Lifted assignments are cheaper to compute while being as useful as regular assignments over that group. Both contributions advance the theoretical understanding of lifted probabilistic inference.
منابع مشابه
Lifted Variable Elimination: A Novel Operator and Completeness Results
Various methods for lifted probabilistic inference have been proposed, but our understanding of these methods and the relationships between them is still limited, compared to their propositional counterparts. The only existing theoretical characterization of lifting is for weighted first-order model counting (WFOMC), which was shown to be complete domain-lifted for the class of 2-logvar models....
متن کاملLifted Variable Elimination for Probabilistic Logic Programming
Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relationa...
متن کاملGeneralized Counting for Lifted Variable Elimination
Lifted probabilistic inference methods exploit symmetries in the structure of probabilistic models to perform inference more efficiently. In lifted variable elimination, the symmetry among a group of interchangeable random variables is captured by counting formulas, and exploited by operations that handle such formulas. In this paper we generalize the structure of counting formulas and present ...
متن کاملOn the Completeness of Lifted Variable Elimination
Lifting aims at improving the efficiency of probabilistic inference by exploiting symmetries in the model. Various methods for lifted probabilistic inference have been proposed, but our understanding of these methods and the relationships between them is still limited, compared to their propositional counterparts. The only existing theoretical characterization of lifting is a completeness resul...
متن کاملCompleteness Results for Lifted Variable Elimination
Lifting aims at improving the efficiency of probabilistic inference by exploiting symmetries in the model. Various methods for lifted probabilistic inference have been proposed, but our understanding of these methods and the relationships between them is still limited, compared to their propositional counterparts. The only existing theoretical characterization of lifting is a completeness resul...
متن کامل